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Abstract—Thekinetics of the decomposition of acetyl-cyclo-hexylsulfonylperoxide (SP, RS(0,)O0C(O)CHj,
R = cyclo-CgH, ;) was studied in a C¢H,Cl, solution in an O, atmosphere at 323-353 K and in an Ar atmosphere

at 323-343 K. The rate constants of SP monomolecular decomposition (k;) and SP reaction with CH; radicals
(k) were determined. The temperature dependences of these rate constants are described by equations logk; =
(145 £2.9) - (115.4 £ 19.0) — (2.3RT) and logks = (11.6 £ 2.2) — (44.6 + 14.2)/(2.3RT), where the activation

energies are expressed in kJ/mol.

INTRODUCTION

The synthesis and some properties of acetyl-cyclo-
hexylsulfonylperoxide (SP) were described for the first
time by Graf [1]. The products and kinetics of the ther-
mal decomposition of SP in some saturated and aro-
matic hydrocarbons, acohols, and in CCl, were studied
more recently [2—4]. It has been found that, under
anaerobic conditions in decane and cyclohexane solu-
tions, alkyl radicalsinduce SP decomposition and O, is
an inhibitor of this process[3].

In this work, the kinetics of SP decomposition was
studied in a 1,2-dichlorobenzene solution in the pres-
ence and absence of O,.

EXPERIMENTAL

SP RS(0,)0O0C(0O)CH;, where R = cyclo-C¢Hy,
was synthesized and purified using the procedure
described in [1]. C¢H,Cl, solvent (“chemically pure”)
wasdistilled at alow pressure. The reaction was carried
out in a glass reactor at a constant temperature. The
reactor was equipped with a Teflon cover, through
which O, or Ar were supplied and bubbled continu-
ously though the solution and samples were taken with
a microsyringe. The reaction kinetics was determined
by the monitoring of SP consumption. The SP concen-
tration was measured by iodometric titration.

RESULTS AND DISCUSSION

SP consumption in the presence of O, is described
well by the first-order rate law. The kinetics was char-
acterized by the rate constant (K, s™'). Thisrate constant
(inan O, atmosphere) was cal culated from the semilog-
arithmic anamorphosis of kinetic curves (Fig. 1, line I).
The values of k' are independent of [SP], within the

experimental error (see table). The substitution of Ar
for O, leads to an increase (~2—3 times) in the SP
decomposition rate (see table) and to an increase in the
apparent reaction order nto 1.3-1.5. Figure 1 illustrates
the linearization of the kinetic curve at n = 1.5 (line 2).
We determined ke, from these data (in the absence of

0,), calculated the initial reaction rate Wy = ke, [SP]o.,

and found k' using formulak' = w,/[SP],,. In contrast to
experiments carried out in the presence of O,, an
increasein [SP],, under anaerobic conditions|eadsto an
increase in k' (table). The constant k' as a function of

[SP], can be linearized in the k'{SP]3° coordinates
(Fig. 2).

In[SP], [mol/1]

[SP]03, (mol/1)03

t, min

Fig. 1. Thelinearization of SP consumption curvesin coor-
dinates of the first-order rate equation (line 1, O, atmo-
sphere) and the 1.5-order equation (line 2, Ar atmosphere),
T=333K.
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Kinetic parameters of SP decomposition
[SP], x 102 - 1 - 1|k L kg x 1074,
T,K Atmosphere ool k x10% s ky x10% st | 732k, T otst
|0 5 m0|—0.5 S—l
323 0, 0.13 0.58+0.07 0.58+0.22 - -
0.80 0.66 + 0.02
3.00 0.81+0.05
Ar 0.15 11+01 0.74+0.30 0.09+0.02 22
0.90 15+02
2.30 21+12
3.40 23+12
333 0, 0.12 2.22+0.13 220+0.04 - -
0.80 2.31+0.01
2.60 2.53+0.02
Ar 0.16 4.15+0.40 24+22 0.42+0.20 3.55
0.66 57+0.9
2.80 95+0.6
343 0, 0.16 8.00+0.05 80+0.9 - -
0.79 8.50+0.03
2.90 9.70 £ 0.05
Ar 0.16 16.2+1.8 111+ 47 1.25+0.43 5.8
0.75 21.7+17
2.70 31.7+15
353 0, 0.14 219+14 21.7 - -
0.75 225+29

By analogy with datareported in[2, 3, 5], the accel-
eration of SP decomposition in the absence of oxygen
in an inert solvent can be explained by the activation of
the chain-radical channel of SP decomposition (reac-
tions (11) and (111)):

RS(0,)O" + CH,CO;
RS(Oz)OOC(O)CHs{ D)
P,

CH,CO; —» CH; + CO,, (I1)

CH; + RS(0,)00C(O)CH
3+ RS(0,)O0C(0)CH,4 a1

—~ RS(0,)OCH, + CH,CO;.

Henceforth, P are nonradical products.

The order of the reaction with respect to SPishigher
than unity; therefore, we should conclude that the lim-
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ing step of the chain processisreaction (111). Therefore,
CHj; radicals participate in chain termination

CH; + RS(0,)O" —» RS(0,)OCHj. )

Apparently, RS(0,)O" radical decay takes place not
only as a result of reaction (V), but also as a result of
their self-recombination (RS(0,)O" + RS(0,)O" —»
products). The participation of CH,CO, radicals in

chain termination can be neglected, because these rad-
icals decompose quickly viareaction (I11); according to
the published data[6], k, ~10° s~

The reactions of CH; and RS(0,)O" radicals with

a cyclohexyl ring of SP were also excluded from con-
sideration:

CH; + RS(0,) OOC(O)CHj
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Fig. 2. The rate constant of SP consumption k' as a func-
tion of [SP] 8‘5 inan Ar atmosphere at (1) 323, (2) 333, and
(3) at 343 K.

—» CH, + 'R'S(0,)OOC(0)CHs,
RS(0,)0" + RS(0,)OOC(O)CHs

—~ RS(0,)OH + 'R'S(0,)O0C(O)CHs.

Similar reactions of these radicals with nonsubsti-
tuted hydrocarbons occur with rates constants of ~10?

for CH; [7] and>108 | mol-! s™! for RS(0,)O" [8] rad-
icals. It is known that the introduction of the S-O;H
group into a linear hydrocarbon molecule deactivates
the neighboring >CH, groups of this hydrocarbon up to
the fourth carbon atom counting from the substituent
[9]. In cyclohexane sulfoxidation, the main product of
the reaction is monosulfo acid; the products of di- and
polysubstitution were not found [1]. The same influ-
ence of the first substituent was also observed in other
chain-radical substitution processes, such as chlorina-
tion, sulfochlorination, and nitration [ 10, 11]. Probably,
the influence of the —-S(0,)O0C(O)CH, group is anal-
ogous.

Using the steady-state approximation and assuming
that chain termination occurs in the absence of O,
mainly viareaction (1V) (ek,[SP] = 2k,[CH; ]?, where g,
is the escape of radicals into the volume in reaction (1)),

the following equation is valid for the rate of SP con-
sumption (w):

_ _d[SP] _ €1k, 15
w = i K.[SP] + ks 2k4[SP] . (1)

According to this equation, the order of the overall
reaction of SP decomposition should be between 1
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Fig. 3. Arrhenius plots of rate constants k; and ks.

and 1.5. Thisis observed experimentally. At the initial
instant ([SP] = [SP],), we obtain from (1)

W, ek
K = —2 = k, +ky [22[SP]5°. )
[SP]O 1 3 2k4[ ]0

The plot of k' as a function of [SP]S” is a straight line
(Fig. 2). Thisisin accordance with Eq. (2). The values

of k, and parameter k;./e,k;/2k, were calculated from
these lines (seetable).

The introduction of O, into the system practically

stops reaction (l11), because the main channel of CH;
radical decay becomes reaction

CH; + O, — CH,0;,, (VD)
occurring with the diffusion rate constant (k, >
10° 1 mol~! s7! [7]). Methylperoxy radicals formed in
reaction (V1) are not active with respect to SP [4] and
decay in the reaction

CH,0, + CH;0, — P.. (VID)
Therefore, in the presence of O,, k' is the rate constant
of monomolecular SP decomposition, that is, k;. The
values of k, measured in aerobic and anaerobic experi-
ments agree with each other. The temperature depen-
dence of k, (Fig. 3) is described by equation

logk, = (145 + 2.9) —(115.4+ 19.0)/2.3RT. (3)

(Henceforth, the activation energy is expressed in
kJmol.)

The values of the preexponential factor and the acti-
vation energy correlate with published datafor benzene
and toluene [4].
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Equation (3) was used to determinetherateconstant 3. Zaripov, R.N., Safiullin, R.L., Yaubasarova, E.I., et al.,

T I2v. Akad. Nauk, Ser. Khim., 1995, no. 6, p. 1049.
ky from the values of parameter k;./e,k./2K, found 4. Zaripov, R.N., Safiullin, R.L., Yaubasarova, E.I., et al.,

above (see table). In these calculations, we used the fol- I 2v. Akad. Nauk, Ser. Khim., 1997, p. 935.
lowing values: €, = 0.5 and 2k, =8.9 x 10° I mol™' s [7]. 5 Ingold, K.U. and Roberts, B.P, Free-Radical Substitu-
Note that the values of k; for the CH; radical deter- tion Reactions, New York: Wiley, 1971, p. 180.

6. Turetskaya, E.A., Skakovskaya, E.D., Rykov, S.V., et al.,
Dokl. Akad. Nauk BSSR, 1980, vol. 24, p. 57.

7. Denisov, E.T., Konstanty skorosti gomoliticheskikh zhid-

mined in this work (table) are ~4 times lower than the
values of an analogous constant for the secondary

CoHy, radical [3]. The temperature dependence of k; kofaznykh reaktsii (The Rate Constants of Homolytic
(Fig. 3) is described by the equation Liquid-Phase Reactions), Moscow: Nauka, 1971.
8. Korth, H.-G., Neville, A.G., and Lusztyk, J., J. Phys.
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